
www.manaraa.com

The VLDB Journal (2009) 18:385–406
DOI 10.1007/s00778-008-0125-y

SPECIAL ISSUE PAPER

SW-Store: a vertically partitioned DBMS for Semantic Web data
management

Daniel J. Abadi · Adam Marcus · Samuel R. Madden ·
Kate Hollenbach

Received: 30 April 2008 / Revised: 1 November 2008 / Accepted: 3 November 2008 / Published online: 4 February 2009
© Springer-Verlag 2009

Abstract Efficient management of RDF data is an important
prerequisite for realizing the Semantic Web vision. Perfor-
mance and scalability issues are becoming increasingly press-
ing as Semantic Web technology is applied to real-world
applications. In this paper, we examine the reasons why cur-
rent data management solutions for RDF data scale poorly,
and explore the fundamental scalability limitations of these
approaches. We review the state of the art for improving
performance of RDF databases and consider a recent sug-
gestion, “property tables”. We then discuss practically and
empirically why this solution has undesirable features. As an
improvement, we propose an alternative solution: vertically
partitioning the RDF data. We compare the performance of
vertical partitioning with prior art on queries generated by
a Web-based RDF browser over a large-scale (more than 50
million triples) catalog of library data. Our results show that a
vertically partitioned schema achieves similar performance
to the property table technique while being much simpler
to design. Further, if a column-oriented DBMS (a database
architected specially for the vertically partitioned case) is
used instead of a row-oriented DBMS, another order of mag-
nitude performance improvement is observed, with query
times dropping from minutes to several seconds. Encouraged
by these results, we describe the architecture of

D. J. Abadi (B)
Yale University, New Haven, CT, USA
e-mail: dna@cs.yale.edu

A. Marcus · S. R. Madden · K. Hollenbach
MIT, Cambridge, MA, USA
e-mail: marcua@csail.mit.edu

S. R. Madden
e-mail: madden@csail.mit.edu

K. Hollenbach
e-mail: kjhollen@mit.edu

SW-Store, a new DBMS we are actively building that imple-
ments these techniques to achieve high performance RDF
data management.

1 Introduction

The Semantic Web is an effort by the W3C [51] to enable
integration and sharing of data across different applications
and organizations. Though called the Semantic Web, the W3C
envisions something closer to a global database than to the
existing World-Wide Web. In the W3C vision, users of the
Semantic Web should be able to issue structured queries
over all of the data on the Internet, and receive correct and
well-formed answers to those queries from a variety of dif-
ferent data sources that may have information relevant to
the query. Database researchers will immediately recognize
that building the Semantic Web requires surmounting many
of the semantic heterogeneity problems faced by the data-
base community over the years. In fact, as in many database
research efforts, the W3C has proposed schema matching,
ontologies, and schema repositories for managing semantic
heterogeneity.

One area in which the Semantic Web community differs
from the relational database community is in its choice of data
model. The Semantic Web data model, called the “Resource
Description Framework” [38], or RDF, represents data as
statements about resources using a graph connecting resource
nodes and their property values with labeled arcs represent-
ing properties. Syntactically, this graph can be represented
using XML syntax (RDF/XML). This is typically the format
for RDF data exchange; however, structurally, the graph can
be parsed into a series of triples, each representing a state-
ment of the form < subject, property, object >, which is
the notation we follow in this paper. These triples can then be

123

www.manaraa.com

386 D. J. Abadi et al.

stored in a relational database with a three-column schema.
For example, to represent the fact that Serge Abiteboul, Rick
Hull, and Victor Vianu wrote a book called “Foundations of
Databases”, we would use seven triples:1

person1 isNamed “Serge Abiteboul”

person2 isNamed “Rick Hull”

person3 isNamed “Victor Vianu”

book1 hasAuthor person1

book1 hasAuthor person2

book1 hasAuthor person3

book1 isTitled “Foundations of Databases”

The commonly stated advantage of this approach is that
it is very general (almost any type of data can be expressed
in this format—it is easy to shred both relational and XML
databases into RDF triples) and it is easy to build tools that
manipulate RDF. These tools will not be useful if differ-
ent users describe objects differently, so the Semantic Web
community has developed a set of standards for expressing
schemas (RDFS and OWL); these make it possible, for exam-
ple, to say that every book should have an author, or that the
property “isAuthor” is the same as the property “authored.”

This data representation, though flexible, has the potential
for serious performance issues, since there is only a single
RDF table, and almost all interesting queries involve many
self-joins over this table. For example, given the data table
given at the top of Fig. 1, to find all of the authors of books
whose title contains the word “Transaction” it is necessary
to perform the five-way self-join query shown at the bottom
of Fig. 1.

This query is potentially very slow to execute, since as the
number of triples in the library collection scales, the RDF
table may well exceed the size of memory, and each of these
filters and joins will require a scan or index lookup. Real
world queries involve many more joins, which complicates
selectivity estimation and query optimization, and limits the
benefit of indices.

As a database researcher, it is tempting to dismiss RDF, as
the data model seems to offer inherently limited performance
for little—or no—improvement in expressiveness or utility.
Regardless of one’s opinion of RDF, however, it appears
to have a great deal of momentum in the web community,
with several international conferences (ISWC, ESWC) each
drawing more than 250 full paper submissions and several
hundred attendees, as well as enthusiastic support from the
W3C (and its founder, Tim Berners-Lee.) Furthermore, an
increasing amount of data are becoming available on the Web
in RDF format. For example, the UniProt comprehensive
catalog of protein sequence, function, and annotation data

1 In practice, RDF uses Universal Resource Identifiers (URIs), which
look like URLs and often include sequences of numbers to make them
unique. We use more readable names in our examples in this paper.

subj prop obj

Fig. 1 Sample RDF data table (top) and SQL over a triple-store for
a query that finds the names of all of the authors of books whose title
contains the word “Transaction” (bottom)

(created by joining information contained in the Swiss-Prot,
TrEMBL, and PIR databases) is now completely available
in RDF [48] and contains over 600 million statements; the
RDF version of the US census data (from year 2000) con-
tain over 1 billion statements; and the W3C SWEO Linking
Open Data community project [50] contains over 2 billion
statements. Online Semantic Web search engine Sindice [44]
claims to index over 100 million Semantic Web documents;
similarly Falcons [22] claims to index 10 million Semantic
Web documents, and Swoogle [46] 2.5 million Semantic Web
documents.

Hence, it is our goal in this paper to explore ways to
improve RDF query performance, since it appears that it
will be an important way for people to represent data on (or
about) the web. We focus on using a relational query proces-
sor to execute RDF queries, as we (and several other research
groups [18,19,24,32,54]) feel that this is likely to be the best
performing approach. The gist of our technique is based on
a simple and familiar observation to proponents of relational
technology: just as with relations, RDF does not have to be
a proposal for physical storage—it is merely a logical data
model. RDF databases are free to store RDF data as they see
fit—including in ways that offer much better performance
than actually storing collections of triples in memory or on
disk.

We look at two different physical organization techniques
for RDF data. The first, called the property table technique,
denormalizes RDF tables by physically storing them in a

123

www.manaraa.com

A vertically partitioned DBMS for Semantic Web data management 387

wider, flattened representation more similar to traditional
relational schemas. One way to do this flattening is to find
sets of properties that tend to be defined together [19,26,53];
i.e., clusters of subjects tend to have these properties defined.
For example, “title,” “author,” and “isbn” might all be prop-
erties that tend to be defined for subjects that represent book
entities. Thus a table containing “subject” as the key and
“title,” “author,” and “isbn” as the other attributes might be
created to store entities of type “book.” This flattened prop-
erty table representation will require many fewer joins to
access, since self-joins on the subject column can be elim-
inated. One can use standard query rewriting techniques to
translate queries over the RDF triple-store to queries over the
flattened representation.

There are several issues with this property table technique,
including:

NULLs. Because not all properties will be defined for all
subjects in the subject cluster, wide tables will have (possi-
bly many) NULLs. For very wide tables with many sparse
attributes, the space overhead of these NULLs can potentially
dominate the space of the data itself.

Multi-valued Attributes. Multi-valued attributes (such as a
book with multiple titles) and many-to-many relationships
(such as the book authorship relationship where a book can
have multiple authors and an author can write multiple books)
are somewhat awkward to express in a flattened representa-
tion. Anecdotally, many RDF datasets make heavy use of
multi-valued attributes, so this may be of more concern here
than in other database applications.

Complexity. A clustering algorithm must typically be used
to find groups of properties that tend to be defined together,
or classes of subjects with similar property definitions. Fur-
thermore, reclustering might become necessary as the data
characteristics change over time.

To address these limitations, we propose a different phys-
ical organization technique for RDF data. We create a two-
column table for each unique property in the RDF dataset
where the first column contains subjects that define the prop-
erty and the second column contains the object values for
those subjects. For the library example, tables would be cre-
ated for, e.g., the “title,” “author,” and “isbn,” properties; each
table listing subject URIs with their corresponding value for
that property. Multi-valued subjects are thus represented as
multiple rows in the table with the same subject and different
values. Although many joins are required to answer queries
over multiple properties, each table is sorted by subject, so
fast (linear) merge joins can be used. Further, only those
properties that are accessed by the query need to be read off
disk (or from memory), saving I/O time.

The above technique can be thought of as a fully vertically
partitioned database on property value. Although vertically

partitioning a database can be done in a normal DBMS, these
databases are not optimized for these narrow schemas (for
example, the tuple header dominates the size of the actual
data resulting in table scans taking 4–5 times as long as
they need to), and there has been a large amount of recent
work on column-oriented databases [3,15,16,33,45], which
are DBMSs optimized for vertically partitioned schemas.

In this paper, we compare the performance of different
RDF storage schemes on a real world RDF dataset. We use the
Postgres open source DBMS to show that both the property
table and the vertically partitioned approaches outperform
the standard triple-store approach by more than a factor of 2
(average query times go from around 100 s to around 40 s) and
have superior scaling properties. We then show that one can
get another order of magnitude in performance improvement
by using a column-oriented DBMS since they are designed
to perform well on vertically partitioned schemas (queries
now run in an average of 3 s). As a result of the good per-
formance of the column-oriented DBMS, we describe the
architecture of SW-Store, an extension of an open-source
column-oriented DBMS, that is designed for high perfor-
mance RDF data management and is currently being built.

The main contributions of this paper are the following:
an overview of the state of the art for storing RDF data
in databases, a proposal to vertically partition RDF data as
a simple way to improve RDF query performance relative
to the state of the art, a description of how we extended a
column-oriented database to implement the vertical partition-
ing approach, and a performance evaluation of these different
proposals. Ultimately, the column-oriented DBMS is able to
obtain near-interactive performance (on non-trivial queries)
over real-world RDF datasets of many millions of records,
something that (to the best of our knowledge) no other RDF
store has been able to achieve.

The remainder of this paper is organized as follows. In
Sect. 2 we discuss the state of the art of storing RDF data in
relational databases, with an extended look at the property
table approach. In Sect. 3, we discuss the vertically parti-
tioned approach and explain how this approach can be imple-
mented inside a column-oriented DBMS. In Sect. 4 we look at
an additional optimization to improve performance on RDF
queries: materializing path expressions in advance. In Sect.
5, we summarize the library benchmark we use for evaluat-
ing the performance of an RDF database, and then compare
the performance of the different RDF storage approaches in
Sect. 6. These results lead into Sect. 7, where we present the
architecture of SW-Store. Finally, we conclude in Sect. 8.

2 Current state of the art

In this section, we discuss the state of the art of storing RDF
data in relational databases, with an extended look at the
property table approach.

123

www.manaraa.com

388 D. J. Abadi et al.

2.1 RDF in RDBMSs

Although there have been non-relational DBMS proposals
for storing RDF data [17], the majority of RDF data storage
solutions use relational DBMSs, such as Jena [54],
Oracle[19], Sesame [18], 3store [24], and SOR [31]. These
solutions generally center around a giant triples table, con-
taining one row for each statement. For example, the RDF
triples table for a small library dataset is shown in Table 1a.

Since URIs and literal values tend to be long strings (rather
than those shown in the simplified example in Table 1a),
many RDF stores choose not to store entire strings in the
triples table; instead they store shortened versions or keys.
Oracle and Sesame map string URIs to integer identifiers
so the data is normalized into two tables, one triples table
using identifiers for each value, and one mapping table that
maps the identifiers to their corresponding strings. This can
be thought of as dictionary encoding the string data. 3store
does something similar, except the identifiers are created by
applying a hash function to each string. Jena prefers to just
dictionary encode the namespace prefix part of the URI and
only normalizes particularly long URIs into a separate table.

Each of the above listed RDF storage solutions imple-
ments a multi-layered architecture, where RDF-specific func-
tionality (for example, query translation) is performed in a
layer above the RDBMS (which sits in the lowest layer).
This removes any dependence on the particular RDBMS used
(though Sesame will take advantage of specific features of
an object relational DBMS such as Postgres to use subtables
to model class and property subsumption relations). Queries
are issued in an RDF-specific querying language (such as
SPARQL [41] or RDQL [39]), converted to SQL in the higher
level RDF layers, and then sent to the RDBMS which will
optimize and execute the SQL query over the triple-store.

For example, the SPARQL query that attempts to get the
title of the book(s) Joe Fox wrote in 2001:

SELECT ?title
FROM table
WHERE { ?book author ‘‘Fox, Joe’’

?book copyright ‘‘2001’’
?book title ?title }

would get converted into the SQL query shown in Table 1b
run over the data in Table 1a.

Note that this simple query results in a three-way self-join
over the triples table (in fact, another join will generally be
needed if the strings are normalized into a separate table, as
described above). If the predicates are selective, this 3-way
join is not expensive (assuming the filters can be pushed down
into the query [30] and that the triples table is indexed—
typically there will be indexes on all three columns). How-
ever, the less selective the predicates, the more problematic
the joins become. As a result, both Jena and Oracle propose

changes to the schema to reduce the number of joins of this
type: property tables. We now examine these data structures
in more detail.

2.2 Property tables

Researchers developing the Jena Semantic Web toolkit, Jena2
[53,54] proposed the use of property tables to speed up que-
ries over triple-stores. They proposed two types of property
tables. The first type, which we call a clustered property table,
contains clusters of properties that tend to be defined together.
For example, for the raw data in Table 1a, type, title, and
copyright date tend to be defined as properties for similar
subjects. Thus, a property table containing these three prop-
erties as attributes along with subject as the table key can be
created, which stores the triples from the original data whose
property is one of these three attributes. The resulting prop-
erty table, along with the left-over triples that are not stored
in this property table, is shown in Table 1c. Multiple property
tables with different clusters of properties may be created;
however, a key requirement for this type of property table
is that a particular property may only appear in at most one
property table.

The second type of property table, termed a property-
class table, exploits the type property of subjects to cluster

Table 1 Some sample RDF data and possible property tables

123

www.manaraa.com

A vertically partitioned DBMS for Semantic Web data management 389

similar sets of subjects together in the same table. Unlike the
first type of property table, a property may exist in multiple
property-class tables. Table 1d shows two example property
tables that may be created from the same set of input data
as Table 1c. Jena2 found property-class tables to be particu-
larly useful for the storage of reified statements (statements
about statements) where the class is rdf:Statement and the
properties are rdf:Subject, rdf:Property, and rdf:Object.

Oracle [19] also adopts a property table-like data struc-
ture (they call it a “subject-property matrix”) to speed up
queries over RDF triples. Their utilization of property tables
is slightly different from Jena2 in that they are not used as
a primary storage structure, but rather as an auxiliary data
structure—a materialized view—that can be used to speed
up specific types of queries.

The most important advantage of the introduction of prop-
erty tables to the triple-store is that they can reduce subject–
subject self-joins of the triples table. For example, the simple
query shown in Sect. 2.1 (“return the title of the book(s) Joe
Fox wrote in 2001”) resulted in a three-way self-join. How-
ever, if title, author, and copyright were all located inside the
same property table, the query can be executed via a simple
selection operator.

Another advantage of property tables is that they open up
the possibility for attribute typing. Rather than storing objects
of many different types in a single column in a triple-store
(and thus in string literal format), attributes like copyright
can be stored in specific date format. This saves space and
can speed up certain operations such as numerical functions,
aggregations, or comparison operations within index code.

To the best of our knowledge, property tables have not
been widely adopted except in specialized cases (like rei-
fied statements). One reason for this may be that they have a
number of disadvantages. As Wilkinson points out [53], one
disadvantage of property tables is that while they are very
good at speeding up queries that can be answered from a
single property table, most queries require joins or unions
to combine data from several tables. For example, for the
data in Table 1, if a user wishes to find out if there are
any items in the catalog copyrighted before 1990 in a lan-
guage other than English, the following SQL queries could
be issued:

SELECT T.subject, T.object
FROM LEFTOVER-TRIPLES AS T, PROPTABLE AS P
WHERE T.subject = P.subject

AND P.copyright < 1990
AND T.property = ‘language’
AND T.object != ‘‘English’’

for the schema in 1c, and

(SELECT T.subject, T.object
FROM LEFTOVER-TRIPLES AS T, BOOKS AS B
WHERE T.subject = B.subject
AND B.copyright < 1990

AND T.property = ‘language’
AND T.object != ‘‘English’’)

UNION
(SELECT T.subject, T.object
FROM LEFTOVER-TRIPLES AS T, CDS AS C
WHERE T.subject = C.subject
AND C.copyright < 1990
AND T.property = ‘language’
AND T.object != ‘‘English’’)

for the schema in 1d. As can be seen, join and union clauses
get introduced into the queries, and query translation and
plan generation get complicated very quickly. Queries that
do not select on class type are generally problematic for
property-class tables, and queries that have unspecified
property values (or for whom property value is bound at
run-time) are generally problematic for clustered property
tables.

Another disadvantage of property tables is that RDF data
tends not to be very structured, and not every subject listed
in the table will have all the properties defined. The less
structured the data, the more NULL values will exist in the
table. In fact, these representations can be extremely sparse—
containing hundreds of NULLs for each non-NULL value.
These NULLs impose a substantial performance overhead,
as has been noted in previous work [2,7,12].

The two problems with property tables are at odds with
one another. If property tables are made narrow, with few
property columns that are highly correlated in their value
definition, the average value density of the table increases
and the table is less sparse. Unfortunately, the likelihood of
any particular query being able to be confined to a single
property table is reduced. On the other hand, if many prop-
erties are included in a single property table, the number of
joins and union clauses per query decreases, but the number
of NULLs in the table increases (it becomes more sparse),
bloating the table and wasting space. Thus there is a fun-
damental trade-off between query complexity as a result of
proliferation of joins and unions and table sparsity (and its
resulting impact on query performance). Similar problems
have been noted in attempts to shred and store XML data in
relational databases [23,43].

A third problem with property tables is the abundance
of multi-valued attributes found in RDF data. Multi-valued
attributes are surprisingly prevalent in the Semantic Web;
for example in the library catalog data we work with in
Sect. 5, properties one might think of as single-valued such as
title, publisher, and even entity type are multi-valued. In gen-
eral, there always seem to be exceptions, and the RDF data
model provides no disincentives for making properties multi-
valued. Furthermore, our experience suggests that RDF data
often has overloaded subject URIs, where the same URI is
used to represent many different real-world entities.

Multi-valued properties are problematic for property
tables for the same reason they are problematic for relational

123

www.manaraa.com

390 D. J. Abadi et al.

tables. They cannot be included with the other attributes in
the same table unless they are represented using list, set,
or bag attributes. However, this requires an object-relational
DBMS, results in variable width attributes, and complicates
the expression of queries over these attributes.

In summary, while property tables can significantly
improve performance by reducing the number of self-joins
and typing attributes, they introduce complexity by requir-
ing property clustering to be carefully done to create property
tables that are not too wide, while still being wide enough to
answer most queries directly. Ubiquitous multi-valued attri-
butes cause further complexity.

3 A simpler alternative

We now look at an alternative to the property table solution to
speed up queries over a triple-store. In Sect. 3.1, we discuss
the vertically partitioned approach to storing RDF triples. We
then look at how we extended a column-oriented DBMS to
implement this approach in Sect. 3.2.

3.1 Vertically partitioned approach

We propose storage of RDF data using a fully decomposed
storage model (DSM) [20], a performance enhancing tech-
nique that has proven to be useful in a variety of applications
including data warehousing [2], biomedical data [21], and
in the context of RDF/S, for taxonomic data [9,47]. The tri-
ples table is rewritten into n two-column tables where n is
the number of unique properties in the data. In each of these
tables, the first column contains the subjects that define that
property and the second column contains the object values
for those subjects. For example, the triples table from Table
1a would be stored as:

Type
ID1 BookType
ID2 CDType
ID3 BookType
ID4 DVDType
ID5 CDType
ID6 BookType

Author
ID1 “Fox, Joe”

Title
ID1 “XYZ”
ID2 “ABC”
ID3 “MNO”
ID4 “DEF”
ID5 “GHI”

Artist
ID2 “Orr, Tim”

Copyright
ID1 “2001”
ID2 “1985”
ID5 “1995”
ID6 “2004”

Language
ID2 “French”
ID3 “English”

Each table is sorted by subject, so that particular subjects
can be located quickly, and that fast merge joins can be used
to reconstruct information about multiple properties for sub-
sets of subjects. The value column for each table can also
be optionally indexed (or a second copy of the table can be
created, that is clustered on the value column).

The advantages of this approach (relative to the property
table approach) are:

Support for multi-valued attributes. A multi-valued attri-
bute is not problematic in the decomposed storage model.

If a subject has more than one object value for a particular
property, then each distinct value is listed in a successive row
in the table for that property. For example, if ID1 had two
authors in the example above, the table would look like:

Author
ID1 “Fox, Joe”
ID1 “Green, John”

Support for heterogeneous records. Subjects that do not
define a particular property are simply omitted from the table
for that property. In the example above, author is only defined
for one subject (ID1) so the table can be kept small (NULL
data need not be explicitly stored). The advantage becomes
increasingly important when the data is not well structured.

Only those properties accessed by a query need to be read.
I/O costs can be substantially reduced.

No clustering algorithms are needed. This point is the basis
behind our claim that the vertically partitioned approach is
simpler than the property table approach. While property
tables need to be carefully constructed so that they are not too
wide, but yet wide enough to independently answer queries,
the algorithm for creating tables in the vertically partitioned
approach is straightforward and need not change over time.

Fewer unions (relative to the property-class schema
approach). In the property-class schema approach (see Fig.
1d), queries that do not restrict on class tend to have many
union clauses. Since, in the vertically partitioned approach,
all data for a particular property is located in the same table,
union clauses in queries are less common.

Of course, there are several disadvantages to this approach.

Increased number of joins. When a query accesses several
properties, multiple two-column vertical partitions have to
be merged. Although this merge process can be performed
by using simple, fast (linear) merge joins and is therefore not
very expensive, the process is also not free. One particularly
problematic class of queries are queries that do not restrict on
property value (or, similarly, the value of the property will
be bound only when the query is processed). In this situa-
tion, all vertical partitions need to be accessed and unioned
together or merged: this class of queries is also problematic
for property tables; however, since there are fewer total prop-
erty tables than vertical partitions, the relative performance
overhead of unioning or merging everything together is more
significant for the vertical partitioning approach.

Although queries that do not restrict on property value
are common in synthetic SPARQL benchmarks [42], we
have found that, in practice, for the RDF applications we
have worked with, such queries are rare. However, should
an application contain queries that do not restrict on prop-
erty value, the vertical partitions can be supplemented with

123

www.manaraa.com

A vertically partitioned DBMS for Semantic Web data management 391

auxiliary data structures that store data in a way that can
accelerate this class of queries. One example of such auxil-
iary data structures is presented in the recent Hexastore paper
[52], which, in addition to storing one vertical partition per
property, also stores vertical partitions for subjects and
objects as well. Hence, queries that do not restrict on prop-
erty, but have selective predicates on subject or object can be
executed quickly.

Inserts. Inserts can be slow for vertically partitioned
schemas, since inserted statements about the same subject
end up needing to access multiple different partitions (one
per property that is defined for the inserted subject). Each par-
tition access can result in a disk seek in the worst case. How-
ever, for all RDF applications we have built, we have found
that the insert rate is low enough that buffering the inserts
in memory and batch rewriting the tables performs well (see
Sect. 7.5 for a description of this batching technique). We
believe this will be the case for many RDF applications.

In Sect. 6 we will compare the performance of the prop-
erty table approach and the vertically partitioned approach to
each other and to the triples table approach. Before we pres-
ent these experiments, we describe how a column-oriented
DBMS can be extended to implement the vertically parti-
tioned approach.

3.2 Extending a column-oriented DBMS

The fundamental idea behind column-oriented databases is
to store tables as collections of columns rather than as col-
lections of rows. In standard row-oriented databases (e.g.,
Oracle, DB2, SQLServer, Postgres, etc.) entire tuples are
stored consecutively (either on disk or in memory). The prob-
lem with this is that if only a few attributes are accessed
per query, entire rows need to be read into memory from
disk (or into cache from memory) before the projection can
occur, wasting bandwidth. By storing data in columns rather
than rows (or in n two-column tables for each attribute in
the original table as in the vertically partitioned approach
described above), projection occurs for free—only those col-
umns relevant to a query need to be read. On the other hand,
inserts might be slower in column-stores, especially if they
are not done in batch.

Although the column-store idea has been around for some
time [11], there has been a recent revival in column-oriented
research and commercial products [15,16,33,45]. This can
be attributed to the increasing divergence of CPU speeds rela-
tive to memory and disk access speeds [14]. As the speed gap
widens, the wasted bandwidth utilization observed in row-
oriented DBMSs becomes increasingly costly. Additionally,
as read-mostly/batch-write database applications (such as
data warehousing) become more prevalent, so will column-
oriented databases. Data warehousing database software

natts infomask hoff... nullbits f1 f2

f1 ID f2ID

Postgres Header (27 bytes) Tuple Data

Tuple DataColumn Store Header

infomask...

Fig. 2 Postgres headers (top) versus column-store headers (bottom).
Column-stores store their headers in a separate column

contains $3.98 billion [49] of the $14.6 billion database
market [36] (27%) and is growing at a rate of 10.3% annually
[49].

At first blush, it might seem strange to use a column-
store to store a set of two-column tables since column-stores
excel at storing big wide tables where only a few attributes are
queried at once. However, column-stores are actually well-
suited for schemas of this type, for the following reasons:

• Tuple headers are stored separately. Databases gener-
ally store tuple metadata at the beginning of the tuple.
For example, Postgres contains a 27 byte tuple header
containing information such as insert transaction time-
stamp, number of attributes in tuple, and NULL flags.
In contrast, the rest of the data in the two-column tables
will generally not take up more than 8 bytes (especially
when strings have been dictionary encoded). A column-
store puts header information in separate columns and
can selectively ignore it (a lot of this data is no longer
relevant in the two column case; for example, the num-
ber of attributes is always two, and there are never any
NULL values since subjects that do not define a particular
property are omitted). Thus, the effective tuple width in
a column-store is on the order of 8 bytes, compared with
35 bytes for a row-store like Postgres, which means that
table scans perform four to five-times quicker in the col-
umn-store. Figure 2 illustrates the headers from Postgres
and a typical column-store.

• Optimizations for fixed-length tuples. In a row-store, if
any attribute is variable length, then the entire tuple is var-
iable length. Since this is the common case, row-stores are
designed for this case, where tuples are located through
pointers in the page header (instead of address offset cal-
culation) and are iterated through using an extra func-
tion call to a tuple interface (instead of iterated through
directly as an array). This has a significant performance
overhead [15,16]. In a column-store, fixed length attri-
butes are stored as arrays. For the two-column tables in
our RDF storage scheme, both attributes are fixed-length
(assuming strings are dictionary encoded).

• Column-oriented data compression. In a column-store,
since each attribute is stored separately, each attribute
can be compressed separately using an algorithm best

123

www.manaraa.com

392 D. J. Abadi et al.

suited for that column. This can lead to significant per-
formance improvement [4]. For example, the subject ID
column, a monotonically increasing array of integers, is
very compressible. Data from the same attribute come
from the same attribute domain, and thus tend to have a
higher degree of data value locality. Further, domain spe-
cific compression techniques can be used to compress the
attribute data and it is often possible to operate directly on
this representation. Bandwidth requirements are reduced
when transferring compressed data, further improving
performance.

• Carefully optimized column merge code. Since merg-
ing columns is a very frequent operation in column-stores,
the merging code is carefully optimized to achieve high
performance [6]. For example, extensive prefetching is
used when merging multiple columns, so that disk seeks
between columns (as they are read in parallel) do not
dominate query time. Merging tables sorted on the same
attribute can use the same code as merging columns from
the same table.

• Direct access to sorted files rather than indirection
through a B tree. While not strictly a property of col-
umn-oriented stores, the increased dependence on merge
joins necessitates that heap files are maintained in guaran-
teed sorted order, whereas the order of heap files in many
row-stores, even on a clustered attribute, is only guaran-
teed through an index. Thus, iterating through a sorted
file must be done indirectly through the index, and extra
seeks between index leaves may degrade performance.

• Column-oriented query optimizer. The decision as to
whether to push selections past merge joins when an attri-
bute is reaccessed later on in a query plan is not obvious
and can affect query performance by an order of mag-
nitude [6]. Having an optimizer designed for attribute-
oriented storage can further improve performance.

In summary, a column-store vertically partitions attributes
of a table. The vertically partitioned scheme described in
Sect. 3.1 can be thought of as partitioning attributes from a
wide universal table containing all possible attributes from
the data domain. Consequently, it makes sense to use a DBMS
that is optimized for this type of partitioning.

3.2.1 Implementation details

We extended an open source column-oriented database sys-
tem (C-Store [45]) to experiment with the ideas presented in
this paper. C-Store stores a table as a collection of columns,
each column stored in a separate file. Each file contains a list
of 64K blocks with as many values as possible packed into
each block. C-Store, as a bare-bones research prototype, did

not have support for temporary tables, index-nested loops
join, union, or operators on the string data type at the outset
of this project, each of which had to be added. We chose to
dictionary encode strings similarly to Oracle and Sesame (as
described in Sect. 2.1) where only fixed-width integer keys
are stored in the data tables, and the keys are decoded at the
end of each query using an index-nested loops join with a
large strings dictionary table.

4 Materialized path expressions

In all three RDF storage schemes described thus far (tri-
ples schema, property tables, and vertically partitioned
tables), querying path expressions (a common operation
on RDF data) is expensive. In RDF data, object values
can either be literals (e.g., “Fox, Joe”) or URIs (e.g.,
http://preamble/FoxJoe). In the latter case, the value can
be further described using additional triples (e.g., <Boo-
kID1, Author, http://preamble/FoxJoe>, <http://preamble/
FoxJoe, wasBorn, “1860”>). If one wanted to find all books
whose authors were born in 1860, this would require a path
expression through the data. In a triples store, this query
might look like

SELECT B.subj

FROM triples AS A, triples AS B

WHERE A.prop = wasBorn

AND A.obj = “1860”

AND A.subj = B.obj

AND B.prop = “Author”

We need to perform a subject–object join to connect infor-
mation about authors with information on the books they
wrote.

In general, in a triples schema, a path expression requires
(n − 1) subject–object self-joins where n is the length of the
path. For a property table schema, (n − 1) self-joins are also
required if all properties in the path expression are included
in the table; otherwise the property table needs to be joined
with other tables. For the vertically partitioned schema, the
tables for the properties involved in the path expression need
to be joined together; however these are joins of the second
(unsorted) column of one table with the first column of the
other table (and are hence not merge joins).

Graphically, the data are modeled as shown in Fig. 3a.
Here we use the standard RDF semantic model where sub-
jects and objects are connected by labeled directed edges
(properties). The path expression join can be observed
through the author and wasBorn properties. If we could store
the results of following the path expression through a more
direct path (shown in Fig. 3b), the join could be eliminated:

123

http://preamble/FoxJoe
http://preamble/FoxJoe
http://preamble/FoxJoe
http://preamble/FoxJoe

www.manaraa.com

A vertically partitioned DBMS for Semantic Web data management 393

(b)(a)

Fig. 3 Graphical presentation of subject–object join queries

SELECT A.subj

FROM proptable AS A,

WHERE A.author:wasBorn = “1860”

Using a vertically partitioned schema, this author:was-
Born path expression can be precalculated (similarly to how
path indexes work in OODBMSs [13,27,35]) and the result
stored in its own two column table as if it were a regular prop-
erty. By precalculating the path expression, we do not have to
perform the join at query time. Note that if any of the proper-
ties along the path in the path expression were multi-valued,
the result would also be multi-valued. Thus, this material-
ized path expression technique is easier to implement in a
vertically partitioned schema than in a property table.

Inference queries (e.g., if X is a part of Y and Y is a part of
Z then X is a part of Z), a very common operation on Seman-
tic Web data, are also usually performed using subject–object
joins, and can be accelerated through this method.

There is, however, a cost in having a larger number of
extra materialized tables, since they need to be recalculated
whenever new triples are added to the RDF store. Thus, for
read-only or read-mostly RDF applications, many of these
materialized path expression tables can be created, but for
insert heavy workloads, only very common path expressions
should be materialized.

Although the materialization step is not an automatic
improvement that comes with the presented architectures,
both the property table and the vertically partitioning app-
roaches naturally extend to allowing such calculations to be
precomputed if they appear on a common path expression.

5 Benchmark

In this section, we describe the RDF benchmark we have
developed for evaluating the performance of our three RDF
databases. Our benchmark is based on publicly available
library data and a collection of queries generated from a web-
based user interface for browsing RDF content.

5.1 Barton data

The dataset we work with is taken from the publicly available
Barton Libraries dataset [28]. These data are provided by the
Simile Project [40], which develops tools for library data
management and interoperability. The data contain records
acquired from an RDF-formatted dump of the MIT Libraries
Barton catalog, converted from raw data stored in an old
library format standard called Machine Readable Catalog
(MARC). Because of the multiple sources the data were
derived from and the diverse nature of the data that is
cataloged, the structure of the data is quite irregular.

We converted the Barton data from RDF/XML syntax to
triples using the Redland parser [37] and then eliminated
duplicate triples. We then did some very minor cleaning of
data, eliminating triples with particularly long literal values
or with subject URIs that were obviously overloaded to cor-
respond to several real-world entities (more than 99% of the
data remained). This left a total of 50, 255, 599 triples in
our dataset, with a total of 221 unique properties, of which
the vast majority appear infrequently. Of these properties, 82
(37%) are multi-valued, meaning that they appear more than
once for a given subject; however, these properties appear
more often (77% of the triples have a multi-valued property).
The dataset provides a good demonstration of the relatively
unstructured nature of Semantic Web data.

5.2 Longwell overview

Longwell [29] is a tool developed by the Simile Project,
which provides a graphical user interface for generic RDF
data exploration in a web browser. The style of browsing
employed, termed “faceted” browsing, where a user can
quickly find data of interest by restricting various dimen-
sions the data can take, is becoming an increasingly common
avenue for interaction with RDF data [31]. The Longwell
technology was recently deployed in Metaweb’s Freebase
Parallax tool [34].

A Longwell session begins by presenting the user with
a list of the values the type property can take (such as Text
or Notated Music in the library dataset) and the number of
times each type occurs in the data. The user can then click
on the types of data to further explore. Longwell shows the
list of currently filtered resources (RDF subjects) in the main
portion of the screen, and a list of filters in panels along the
side. Each panel represents a property that is defined on the
current filter, and contains popular object values for that prop-
erty along with their corresponding frequencies. If the user
selects an object value inside one of these property panels,
this filters the working set of resources to those that have that
property-object pair defined, updating the other panels with
the new frequency counts for this narrower set of resources.

123

www.manaraa.com

394 D. J. Abadi et al.

We will now describe a sample browsing session through
the Longwell interface. The reader may wish to follow the
described path by looking at a set of screenshots taken from
the online Longwell Demo we include in our companion
technical report [1]. The path starts when the user selects
Text from the type property box, which filters the data into a
list of text entities. On the right side of the screen, we find
that popular properties on these entities include “subject,”
“creator,” “language,” and “publisher.” Within each property
there is a list of the counts of the popular objects within this
property. For example, we find out that the German object
value appears 122 times and the French object value appears
131 times under the language property. By clicking on “fre”
(French language), information about the 131 French texts in
the database is presented, along with the revised set of pop-
ular properties and property values defined on these French
texts.

Currently, Longwell only runs on a small fraction of the
Barton data (9,375 records), as its RDF triple-store cannot
scale to support the full 50 million triple dataset (we show this
scalability limitation in our experiments). Our experiments
use Longwell-style queries to provide a realistic benchmark
for testing the designs proposed. Our goal is to explore archi-
tectures and schemas which can provide interactive perfor-
mance on the full dataset.

By displaying only a subset of the properties in the display
window at once, Longwell queries do not suffer from the
unrestricted property problem mentioned in Sect. 3.1. One
might argue that this is a drawback of the benchmark, as it
does not contain an example of a class of queries this is partic-
ularly problematic for vertical partitioning. However, since
our goal is to evaluate performance on a realistic benchmark,
and since the unrestricted property problem can be solved
using other methods [52], we choose not to synthetically
introduce queries of this type.

5.3 Longwell queries

Our experiments feature seven queries that need to be exe-
cuted on a typical Longwell path through the data. These
queries are based on a typical browsing session, where the
user selects a few specific entities to focus on and where the
aggregate results summarizing the contents of the RDF store
are updated.

The full queries are described at a high level here and are
provided in full in the appendix as SQL queries against a tri-
ple-store. We will discuss later how we rewrote the queries
for each schema.

Query 1 (Q1). Calculate the opening panel displaying the
counts of the different types of data in the RDF store. This
requires a search for the objects and counts of those objects
with property Type.

There are 30 such objects. For example Type: Text has a count
of 1,542,280, and Type: NotatedMusic has a count of 36,441.

Query 2 (Q2). The user selects Type: Text from the previ-
ous panel. Longwell must then display a list of other defined
properties for resources of Type: Text. It must also calculate
the frequency of these properties. For example, the Language
property is defined 1,028,826 times for resources that are of
Type: Text.

Query 3 (Q3). For each property defined on items of Type:
Text, populate the property panel with the counts of popular
object values for that property (where popular means that an
object value appears more than once). For example, the prop-
erty Edition has eight items with value “[1st_ed._reprinted].”

Query 4 (Q4). This query recalculates all of the property-
object counts from Q3 if the user clicks on the “French” value
in the “Language” property panel. Essentially this is narrow-
ing the working set of subjects to those whose Type is Text
and Language is French. This query is thus similar to Q3,
but has a much higher-selectivity.

Query 5 (Q5). Here we perform a type of inference. If there
are triples of the form (X Records Y) and (Y Type Z) then we
can infer that X is of type Z . Here X Records Y means that X
records information about Y (for example, X might be a web
page with information on Y). For this query, we want to find
the inferred type of all subjects that have this Records prop-
erty defined that also originated in the US Library of Con-
gress (i.e., contain triples of the form (X origin “DLC”)). The
subject and inferred type is returned for all non-Text entities.

Query 6 (Q6). For this query, we combine the inference first
step of Q5 with the property frequency calculation of Q2 to
extract information in aggregate about items that are either
directly known to be of Type: Text (as in Q2) or inferred to
be of Type: Text through the Q5 Records inference.

Query 7 (Q7). Finally, we include a simple triple selection
query with no aggregation or inference. The user tries to learn
what a particular property (in this case Point) actually means
by selecting other properties that are defined along with a par-
ticular value of this property. The user wishes to retrieve sub-
ject, Encoding, and Type of all resources with a Point value
of “end.” The result set indicates that all such resources are
of the type Date. This explains why these resources can have
“start” and “end” values: each of these resources represents
a start or end date, depending on the value of Point.

We make the assumption that the Longwell administra-
tor has selected a set of 28 interesting properties over which
queries will be run (see discussion in the final paragraph
of Sect. 5.2). These properties are listed in our technical

123

www.manaraa.com

A vertically partitioned DBMS for Semantic Web data management 395

report [1]. There are 26,761,389 triples for these properties.
For queries Q2, Q3, Q4, and Q6, only these 28 properties are
considered for aggregation.

6 Evaluation

Now that we have described our benchmark dataset and the
queries that we run over it, we compare their performance in
three different schemas—a triples schema, a property tables
schema, and a vertically partitioned schema. We study the
performance of each of these three schemas in a row-store
(Postgres) and, for the vertically partitioned schema, also in
a column-store (our extension of C-Store).

Our goal is to study the performance tradeoffs between
these representations to understand when a vertically parti-
tioned approach performs better (or worse) than the property
tables solution. Ultimately, the goal is to improve perfor-
mance as much as possible over the triple-store schema, since
this is the schema most RDF store systems use.

6.1 System

Our benchmarking system is a hyperthreaded 3.0 GHz
Pentium IV, running RedHat Linux, with 2 Gbytes of mem-
ory, 1MB L2 cache, and a 3-disk, 750 Gbyte striped RAID
array. The disk can read cold data at 150–180 MB/sec.

6.1.1 PostgreSQL database

We chose Postgres as the row-store to experiment with
because Beckmann et al. [12] experimentally showed that it
was by far more efficient dealing with sparse data than com-
mercial database products. Postgres does not waste space
storing NULL data: every tuple is preceded by a bit-string
of cardinality equal to the number of attributes, with ‘1’s at
positions of the non-NULL values in the tuple. NULL data
is thus not stored; this is unlike commercial products that
waste space on NULL data. Beckmann et al. show that Post-
gres queries over sparse data operate about eight times faster
than commercial systems.

We ran Postgres with work_mem = 51200, meaning that
50 Mbytes of memory are dedicated to each sorting and hash-
ing operation. This may seem low, but the work_mem value is
considered per operation, many of which are highly parallel-
izable. For example, when multiple aggregations are simul-
taneously being processed during the UNIONed GROUP BY
queries for the property table implementation, a higher value
of work_mem would cause the query executor to use all avail-
able physical memory and thrash. We set effective_cache_size
to 183500 4KB pages. This value is a planner hint to predict
how much memory is available in both the Postgres and oper-
ating system cache for overall caching. Setting it to a higher

value does not change the plans for any of the queries run. We
turned fsync off to avoid syncing the write-ahead log to disk
to make comparisons to C-Store fair, since it does not use
logging [45]. All queries were run at a READ COMMIT-
TED isolation level, which is the lowest level of isolation
available in Postgres, again because C-Store was not using
transactions.

6.2 Store implementation details

We now describe the details of our store implementations.
Note that all implementations feature a dictionary encoding
table that maps strings to integer identifiers (as was described
in Sect. 2.1); these integers are used instead of strings to rep-
resent properties, subjects, and objects. The encoding table
has a clustered B+ tree index on the identifiers, and an unclu-
stered B+ tree index on the strings. We found that all exper-
iments, including those on the triple-store, went an order of
magnitude faster with dictionary encoding.

6.2.1 Triple store

Of the popular full triple-store implementations, Sesame [18]
seemed the most promising in terms of performance because
it provides a native store that utilizes B+ tree indices on any
combination of subjects, properties, and objects, but does not
have the overhead of a full database (of course, scalability
is still an issue as it must perform many self-joins like all
triple-stores). We were unable to test all queries on Sesame,
as the current version of its query language, SeRQL, does
not support aggregates (which are slated to be included in
version 2 of the Sesame project). Because of this limitation,
we were only able to test Q5 and Q7 on Sesame, as they
did not feature aggregation. The Sesame system implements
dictionary encoding to remove strings from the triples table,
and including the dictionary encoding table, the triples table,
and the indices on the tables, the system took 6.4 GBytes on
disk.

On Q5, Sesame took 1400.94 s. For Q7, Sesame completed
in 79.98 s. These results are the same order of magnitude, but
2–3 × slower than the same queries we ran on a triple-store
implemented directly in Postgres. We attribute this to the
fact that we compressed namespace strings in Postgres more
aggressively than Sesame does, and we can interact with the
triple-store directly in SQL rather than indirectly through
Sesame’s interfaces and SeRQL. We observed similar results
when using Jena instead of Sesame.

Thus, in this paper, we report triple-store numbers using
the direct Postgres representation, since this seems to be a
more fair comparison to the alternative techniques we explore
(where we also directly interact with the database) and allows
us to report numbers for aggregation queries.

123

www.manaraa.com

396 D. J. Abadi et al.

Our Postgres implementation of the triple-store contains
three columns, one each for subject, property, and object. The
table contains three B+ tree indices: one clustered on (sub-
ject, property, object), two unclustered on (property, object,
subject) and (object, subject, property). We experimentally
determined these to be the best performing indices for our
query workload. We also maintain the list of the 28 interest-
ing properties described in Sect. 5.3 in a small separate table.
The total storage needs for this implementation is 8.3 GBytes
(including indices and the dictionary encoding table).

6.2.2 Property table store

We implemented clustered property tables as described in
Sect. 2.1. To measure their best-case performance, we cre-
ated a property table for each query containing only the col-
umns accessed by that query. Thus, the table for Q2, Q3,
Q4, and Q6 contains the 28 interesting properties described
in Sect. 5.3. The table for Q1 stores only subject and Type
property columns, allowing for repetitions in the subject for
multi-valued attributes. The table for Q5 contains columns
for subject, Origin, Records, and Type. The Q7 table contains
subject, Encoding, Point, and Type columns. We will look at
the performance consequences of property tables that are
wider than needed to answer particular queries in Sect. 6.7.

For all but Q1, multi-valued attributes are stored in col-
umns that are integer arrays (int[] in Postgres), while all
other columns are integer types. For single-valued attributes
that are used as selection predicates, we create unclustered
B+ tree indices. We attempted to use GiST [25] indexing for
integer arrays in Postgres,2 but using this access path took
more time than a sequential scan through the database, so
multi-valued attributes used as selection predicates were not
indexed. All tables had a clustered index on subject. While
the smaller tables took less space, the property table with 28
properties took 14 GBytes (including indices and the dictio-
nary encoding table).

6.2.3 Vertically partitioned store in Postgres

The vertically partitioned store contains one table per
property. Each table contains a subject and object column.
There is a clustered B+ tree index on subject, and an unclu-
stered B+ tree index on object. Multi-valued attributes are
represented as described in Sect. 3.1 through multiple rows
in the table with the same subject and different object value.
This store took up 5.2 GBytes (including indices and the
dictionary encoding table).

2 http://www.sai.msu.su/~megera/postgres/gist/intarray/README.
intarray.

6.2.4 Column-oriented store

Properties are stored on disk in separate files, in blocks of 64
KB. Each property contains two columns like the vertically
partitioned store above. Each property has a clustered B+
tree on subject; and single-valued, low cardinality properties
have a bit-map index on object. We used the C-Store default
of 4MB column prefetching (this reduces seeks in merge
joins). This store took up 2.7 GBytes (including indices and
the dictionary encoding table).

6.3 Query implementation details

In this section, we discuss the implementation of all seven
benchmark queries in the four designs described above.

Q1. On a triple-store, Q1 does not require a join, and aggre-
gation can occur directly on the object column after the prop-
erty=Type selection is performed. The vertically partitioned
table and the column-store aggregate the object values for the
Type table. Because the property table solution has the same
schema as the vertically partitioned table for this query, the
query plan is the same.

Q2. On a triple-store, this query requires a selection on
property=Type and object=Text, followed by a self-join on
subject to find what other properties are defined for these sub-
jects. The final step is an aggregation over the properties of
the newly joined triples table. In the property table solution,
the selection predicate Type=Text is applied, and then the
counts of the non-NULL values for each of the 28 columns
is written to a temporary table. The counts are then selected
out of the temporary table and unioned together to produce
the correct results schema. The vertically partitioned store
and column-store select the subjects for which the Type table
has object value Text, and store these in a temporary table, t .
They then union the results of joining each property’s table
with t and count all elements of the resulting joins.

Q3. On a triple-store, Q3 requires the same selection and
self-join on subject as Q2. However, the aggregation groups
by both property and object value.

The property table store applies the selection predicate
Type=Text as in Q2, but is unable to perform the aggregation
on all columns in a single scan of the property table. This is
because grouping must be per property and then object for
each column, and thus each column must group by the object
values in that particular column (a single GROUP BY clause
is not sufficient). The SQL standard describes GROUP BY
GROUPING SETS to allow multiple GROUP BY aggrega-
tion groups to be performed in a single sequential scan of a
table. Postgres does not implement this feature, and so our
query plan requires a sequential scan of the table for each
property aggregation (28 sequential scans), which should

123

http://www.sai.msu.su/~megera/postgres/gist/intarray/README.intarray
http://www.sai.msu.su/~megera/postgres/gist/intarray/README.intarray

www.manaraa.com

A vertically partitioned DBMS for Semantic Web data management 397

prove to be expensive. There is no way for us to accurately
predict how the use of grouping sets would improve perfor-
mance, but it should greatly reduce the number of sequential
scans.

The vertical store and the column store work like they did
in Q2, but perform a GROUP BY on the object column of
each property after merge joining with the subject temporary
table. They then union together the aggregated results from
each property.

Q4. On a triple-store, Q4 has a selection for property=Lan-
guage and object=French at the bottom of the query plan.
This selection is joined with the Type Text selection (again
a self-join on subject), before a second self-join on subject
is performed to find the other properties and objects defined
for this refined subject list.

The property table store performs exactly as it did in Q3,
but adds an extra selection predicate on Language=French.

The vertically partitioned and column stores work as they
did in Q3, except that the temporary table of subjects is fur-
ther narrowed down by a join with subjects whose Language
table has object=French.

Q5. On a triple-store, this requires a selection on property=
Origin and object=DLC, followed by a self-join on subject
to extract the other properties of these subjects. For those
subjects with the Records property defined, we do a subject–
object join to get the types of the subjects that were objects
of the Records property.

For the property table approach, a selection predicate is
applied on Origin=DLC, and the Records column of the
resulting tuples is projected and (self) joined with the subject
column of the original property table. The type values of the
join results are extracted.

On the vertically partitioned and column stores, we per-
form the object=DLC selection on the Origin property, join
these subjects with the Records table, and perform a subject–
object join on the Records objects with the Type subjects to
attain the inferred types.

Note that as described in Sect. 4, subject–object joins
are slower than subject-subject joins because the object col-
umn is not sorted in any of the approaches. We discuss how
the materialized path expression optimization described in
Sect. 4 affects the results of this query and Q6 in Sect. 6.6.

Q6. On a triple-store, the query first finds subjects that are
directly of Type: Text through a simple selection predicate,
and then finds subjects that are inferred to be of Type Text by
performing a subject–object join through the records prop-
erty as in Q5. Next, it finds the other properties defined on this
working set of subjects through a self-join on subject. Finally,
it performs a count aggregation on these defined properties.

The property table, vertical partitioning, and column-store
approaches first create temporary tables by the methods of

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Geo.
Mean

Triple Store 24.63 156.99 224.33 27.67 408.68 212.71 38.37 97
Prop. Table 12.66 18.37 579.78 28.54 47.85 100.99 6.1 38
Vert. Part. 12.66 41.7 71.3 35.49 52.34 84.6 13.25 36
C-Store 0.66 1.64 9.28 2.24 15.88 10.81 1.44 3

0

50

100

150

200

250

Q
u

er
y

 T
im

e
 (

se
co

n
d

s)

579.8 408.7

Fig. 4 Performance comparison of the triple-store schema with the
property table and vertically partitioned schemas (all three implemented
in Postgres) and with the vertically partitioned schema implemented in
C-Store. Property tables contain only the columns necessary to execute
a particular query

Q2 and Q5, and perform aggregation in a similar fashion to
Q2.

Q7. To implement Q7 on a triple-store, the selection on
the Point property is performed, and then two self-joins are
performed to extract the Encoding and Type values for the
subjects that passed the predicate.

In the property table schema, the property table is nar-
rowed down by a filter on Point, which is accessed by an
index. At this point, the other three columns (subject, Encod-
ing, Type) are projected out of the table.

In the vertically partitioned and column-store approaches,
we join the filtered Point table’s subject with those of the
Encoding and Type tables, returning the result.

Since this query returns slightly less than 75,000 triples,
we avoid the final join with the string dictionary table for this
query since this would dominate query time and is the same
for all four approaches. We are exploring intelligent caching
techniques to reduce the cost of this final dictionary decoding
step for high cardinality queries.

6.4 Results

The performance numbers for all seven queries on the four
architectures are shown in Fig. 4. All times presented in this
paper are the average of three runs of the queries. Between
queries we copy a 2 GByte file to clear the operating system
cache, and restart the database to clear any internal caches.

The property table and vertical partitioning approaches
both perform a factor of 2–3 faster than the triple-store

123

www.manaraa.com

398 D. J. Abadi et al.

approach (the geometric mean3 of their query times was 38
and 36 s, respectively, compared with 97 s for the triple-store
approach.4 C-Store added another factor of 10 performance
improvement with a geometric mean of 3 s (and so is a factor
of 32 faster than the triple-store).

To better understand the reasons for the differences in per-
formance between approaches, we look at the performance
differences for each query. For Q1, the property table and ver-
tical partitioning numbers are identical because we use the
idealized property table for each query, and since this query
only accesses one property, the idealized property table is
identical to the vertically partitioned table. The triple-store
only performs a factor of two slower since it does not have
to perform any joins for this query. Perhaps surprisingly,
C-Store performs an order of magnitude better. To under-
stand why, we broke the query down into pieces. First, we
noted that the type property table in Postgres takes 472 MB
compared to just 100 MB in C-Store. This is almost entirely
due to the fact that the Postgres tuple header is 27 bytes com-
pared with just 8 bytes of actual data per tuple and so the
Postgres table scan needs to read 35 bytes per tuple (actu-
ally, more than this if one includes the pointer to the tuple in
the page header) compared with just 8 for C-Store.

Another reason why C-Store performs better is that it uses
an index nested loops join to join keys with the strings dic-
tionary table while Postgres chooses to do a merge join. This
final join takes 5 s longer in Postgres than it does in C-Store
(this 5 s overhead is observable in the other queries as well).
These two reasons account for the majority of the perfor-
mance difference between the systems; however, the other
advantages of using a column-store described in Sect. 3.2
are also a factor.

Q2 shows why avoiding the expensive subject-subject
joins of the triple-store is crucial, since the triple-store per-
forms much more slowly than the other systems. The vertical
partitioning approach is outperformed by the property table
approach since it performs 28 merge joins that the property
table approach does not need to do (again, the property table
approach is helped by the fact that we use the optimal prop-
erty table for each query).

As expected, the multiple sequential scans of the property
table hurt it in Q3. Q4 is so highly selective that the query
results for all but C-Store are quite similar. The results of the
optimal property table in Q5–Q7 are on par with those of the
vertically partitioned option, and show that subject–object
joins hurt each of the stores significantly.

3 We use geometric mean—the nth root of the product of n numbers—
instead of the arithmetic mean since it provides a more accurate reflec-
tion of the total speedup factor.
4 If we hand-optimized the triple-store query plans rather than use the
Postgres default, we were able reduce the mean to 79 s; this demon-
strates the fact that by introducing a number of self-joins, queries over
a triple-store schema are very hard to optimize.

On the whole, vertically partitioning a database provides
a significant performance improvement over the triple-store
schema, and performs similarly to property tables. Given that
vertical partitioning in a row-oriented database is competi-
tive with the optimal scenario for a property table solution,
we conclude that they are the preferable solution since they
are simpler to implement. Further, if one uses a database
designed for vertically partitioned data such as C-Store, addi-
tional performance improvement can be realized. C-Store
achieved nearly interactive time on our benchmark running
on a single machine that is 2 years old.

We also note that multi-valued attributes play a role in
reducing the performance of the property table approach.
Because we implement multi-valued attributes in property
tables as arrays, simple indexing can not be performed on
these arrays, and the GiST [25] indexing of integer arrays
performs worse than a sequential scan of the property table.

Finally, we remind the reader that the property tables for
each query are idealized in that they only include the subset
of columns that are required for the query. As we will show
in Sect. 6.7, poor choice in columns for a property table will
lead to less-than-optimal results, whereas the vertical parti-
tioning solution represents the best- and worst-case scenarios
for all queries.

6.4.1 Postgres as a choice of RDBMS

There are several notes to consider that apply to our choice
of Postgres as the RDBMS. First, for Q3 and Q4, performance
for the property table approach would be improved if
Postgres implemented GROUP BY GROUPING SETs.

Second, for the vertically partitioned schema, Postgres
processes subject-subject joins non-optimally. For queries
that feature the creation of a temporary table containing sub-
jects that are to be joined with the subjects of the other prop-
erties’ tables, we know that the temporary list of subjects
will be in sorted order, as it comes from a table that is clus-
tered on subject. Postgres does not carry this information
into the temporary table, and will only perform a merge join
for intermediate tuples that are guaranteed to be sorted. To
simulate the fact that other databases would maintain the
metadata about the sorted temporary subject list, we create
a clustered index on the temporary table before the UNION-
JOIN operation. We only included the time to create the tem-
porary table and the UNION-JOIN operations in the total
query time, as the clustering is a Postgres implementation
artifact.

Further, Postgres does not assume that a table clustered
on an attribute is in perfectly sorted order (due to possible
modifications after the cluster operation), and thus can not
perform the merge join directly; rather it does so in conjunc-
tion with an index scan, as the index is in sorted order. This
process incurs extra seeks as the leaves of the B+ tree are

123

www.manaraa.com

A vertically partitioned DBMS for Semantic Web data management 399

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45 50 55

Q
ue

ry
 ti

m
e

(s
ec

on
ds

)

Number of Triples (millions)

Triple Store C-Store Vertical Partitioning

Fig. 5 Query 6 performance as number of triples scale

traversed, leading to a significant cost effect compared to the
inexpensive merge join operations of C-Store.

With a different choice of RDBMS, performance results
might differ, but we remain convinced that Postgres was a
good choice of RDBMS, given that it handles NULL values
so well, and thus enabled us to fairly benchmark the property
table solutions.

6.5 Scalability

Although the magnitude of query performance is important,
an arguably more important factor to consider is how per-
formance scales with size of data. In order to determine this,
we varied the number of triples we used from the library
dataset from one million to fifty million (we randomly chose
what triples to use from a uniform distribution) and reran the
benchmark queries. Figure 5 shows the results of this exper-
iment for query 6. Both vertical partitioning schemes (Post-
gres and C-Store) scale linearly, while the triple-store scales
super-linearly. This is because all joins for this query are lin-
ear for the vertically partitioned schemes (either merge joins
for the subject-subject joins, or index scan merge joins for the
subject–object inference step); however the triple-store sorts
the intermediate results after performing the three selections
and before performing the merge join. We observed similar
results for all queries except queries 1, 4, and 7 (where the
triple-store also scales linearly, but with a much higher slope
relative to the vertically partitioned schemes).

6.6 Materialized path expressions

As described in Sect. 4, materialized path expressions can
remove the need to perform expensive subject–object joins by
adding additional columns to the property table or adding an
extra table to the vertically partitioned and column-
oriented solutions. This makes it possible to replace subject–
object joins with cheaper subject-subject joins. Since Queries
5 and 6 contain subject–object joins, we reran just those

Table 2 Query times (in s) for Q5 and Q6 after the Records:Type path
is materialized. % faster = 100|original−new|

original

Q5 Q6

Property table 39.49 (17.5% faster) 62.6 (38% faster)

Vertical partitioning 4.42 (92% faster) 65.84 (22% faster)

C-Store 2.57 (84% faster) 2.70 (75% faster)

experiments using materialized path expressions. Recall that
in these queries we join object values from the Records prop-
erty with subject values to get those subjects that can be
inferred to be a particular type through the Records property.

For the property table approach, we widened the prop-
erty table by adding a new column representing the materi-
alized path expression: Records:Type. This column indicates
the type of entity that is related to a subject through the
Records property (if a subject does not have a Records prop-
erty defined, its value in this column will be NULL). Sim-
ilarly, for the vertically partitioned and column-oriented
solutions, we added a table containing a subject column and
a Records:Type object column, thus allowing one to find
the Type of objects that a resource Records with a cheap
subject-subject merge join. The results are displayed in
Table 2.

It is clear that materializing the path expression and remov-
ing the subject–object join results in significant improvement
for all schemas. However, the vertically partitioned schemas
see a greater benefit since the materialized path expression is
multi-valued (which is the common case, since if at least one
property along the path is multi-valued, then the materialized
result will be multi-valued).

In summary, Q5 and Q6, which used to take 400 and 200 s,
respectively, on the triple-store, now take less than 3 seconds
on the column-store. This represents a two orders of magni-
tude performance improvement!

6.7 The effect of further widening

Given that semantic web content is likely to have an unstruc-
tured schema, clustering algorithms will not always yield
property tables that are the perfect width for all queries. We
now experimentally demonstrate the effect of property tables
that are wider than they need to be for the same queries run
in the experiments above. Row-stores traditionally perform
poorly relative to vertically partitioned schemas and column-
stores when queries need to access only a few columns of a
wide table, so we expect the performance of the property table
implementation to degrade with increasing table width. To
measure this, we synthetically added 60 non-sparse random
integer-valued columns to the end of each tuple in the wid-
est property table in Postgres. This resulted in an approx-
imately 7 GByte increase in database size. We then reran

123

www.manaraa.com

400 D. J. Abadi et al.

Table 3 Query times (in s) comparing a wider than necessary property
table to the property table containing only the columns required for the
query

Query Wide property table Property table
(% slowdown)

Q1 60.91 381

Q2 33.93 85

Q3 584.84 1

Q4 44.96 58

Q5 76.34 60

Q6 154.33 53

Q7 24.25 298

% Slowdown = 100|original−new|
original . Vertically partitioned stores are not

affected

Q1–Q7 on this wide property table. The results are shown in
Table 3.

Since each of the queries (except query 1) executes in
two parts, first creating a temporary table containing the sub-
set of the relevant data for that query, and then executing
the rest of the query on this subset, we see some variance
in % slowdown numbers, where smaller slowdown numbers
indicate that a majority of the query time was spent on the
second stage of query processing. However, each query sees
some degree of slowdown. These results support the notion
that while property tables can sometimes outperform vertical
partitioning on a row-oriented store, a poor choice of property
table can result in significantly poorer query performance.
The vertically partitioned solutions are impervious to such
effects.

7 SW-Store Design

Inspired by our observations from the previous section that
column-stores present some clear advantages in storing RDF
data, we have begun an initial implementation of an RDF
database, called SW-Store. Our hope is that SW-Store will
both be able to function as a stand-alone RDF database and
alternatively as a storage layer for existing RDF applica-
tions such as Jena, Sesame, or the Web-based RDF browser
described in Sect. 5.

7.1 System architecture

The basic architecture of SW-Store is shown in Fig. 6. The
system consists of four major components: a vertically parti-
tioned storage system, a relational query engine that executes
queries over those partitions, a query rewriter that converts
queries in SQL or SPARQL over RDF triples into queries
over the vertically partitioned schema, and a batch-writer

Vertically partitioned storage system

Query Executor

Query Rewriter

SQL/SPARQL Queries

RDF Batch Writer

RDF Inserts

Chunks of
Relational Tuples

Fig. 6 The architecture of SW-Store

that periodically converts RDF triples stored in an overflow
table into vertically partitioned data. We discuss each of these
components in more detail in the sections below.

7.2 Storage system

As described in Sect. 3, the majority of the data in SW-Store
are stored in two-column tables; one table for each unique
property in the data set. Each table is sorted by the first (sub-
ject) column to facilitate high performance table merge oper-
ations.

The default C-Store implementation stores each column
of these two-column tables in a separate file, stored on disk
in blocks of 64 KB. However, we have found this “pure”
column-oriented storage to be non-optimal since most prop-
erty table accesses require data from both columns. Thus,
SW-Store adopts a hybrid storage representation along the
lines of PAX [8], where a single block contains data from
both columns; however, within a block, data from each col-
umn are kept separate.

Blocks may be compressed, and each column within a
block can use a different compression method (e.g., run-
length, bit-vector, or Lempel-Ziv encoding), as in C-Store [4].
Each block is compressed separately, which allows us to
avoid decompressing a whole table to access a few rows.

A single-column table that contains all subjects that appear
in at least one vertical partition is also stored. This allows SW-
Store to avoid storing the subject column for some proper-
ties (i.e., the vertical partition becomes a single-column list of
object values). In such a situation, there must be a one-to-one
mapping between entries in the values column and subjects
stored in the subjects table. As shown in Fig. 7b, for a parti-
tion representing property p, SW-Store must store a NULL
in the values list for any subject that does not have property p.
In such cases, the vertical partitioning advantage of not hav-
ing to store NULL values no longer exists. Of course, NULL
data can be compressed, and when the compressed single-
column table with NULL values is smaller than the two-

123

www.manaraa.com

A vertically partitioned DBMS for Semantic Web data management 401

(a) Original vertically partitioned schema from Section 3.

Type
ID1 BookType
ID2 CDType
ID3 BookType
ID4 DVDType
ID5 CDType
ID6 BookType

Title
ID1
ID2
ID3
ID4
ID5

Copyright
ID1
ID2
ID5
ID6

Author
ID1

Artist
ID2

Language
ID2
ID3

(b) The subject column does not need to be stored if object values map one-to-one to an all-subjects table and NULLs used for
undefined subject-property combinations. The same data as in (a) is shown below, with the subject columns from each partition
removed.

Subjects
ID1
ID2
ID3
ID4
ID5
ID6

Types
BookType
CDType

BookType
DVDType
CDType

BookType

Title

NULL

Copyright

NULL
NULL

Author

NULL
NULL
NULL
NULL
NULL

Artist
NULL

NULL
NULL
NULL
NULL

Language
NULL

NULL
NULL
NULL

(c) The same schema as in (b) with NULLs being compressed using each of the three types of sparse data compression described in
Section 7.2.1.

Subjects
ID1
ID2
ID3
ID4
ID5
ID6

Types
BookType
CDType

BookType
DVDType
CDType

BookType

Title
Range: [1-5]

Copyright
Bit: 110011

Author
List: 1

Artist
List: 2

Language
Range: [2-3]

Fig. 7 Vertically partitioned storage system

column table without NULL values, SW-Store chooses the
single-column representation. We describe several compres-
sion methods we use for sparse (NULL-rich) data in
Sect. 7.2.1 below. In the current implementation, multi-val-
ued properties cannot be implemented as single column tables
(due to the need for one-to-one value-to-subject mapping);
however, we envision dropping this requirement in the future
(a special flag indicating that the current value is actually
multiple values, followed by the number of values and then
the values themselves could be used).

Both columns from each vertical partition can be indexed,
as appropriate. Since the first column is always sorted in each
vertical partition, a sparse index is used to index this column.
Further, an inverted index on all string data can be maintained
to improve performance of string-matching queries.

7.2.1 Representing sparse data

As described above, in some cases it is preferable to avoid
storing the subject column in the vertical partition for a prop-
erty p, instead storing just one value in the vertical parti-
tion for each possible subject, with a NULL value stored
if the subject does not have property p. In this case, it is

usually desirable to aggressively compress the NULL data.
We follow the column-oriented sparse compression schemes
presented in our previous work [2]. Sparse data is stored
using three different encodings for NULLs. For very dense
data or for data where NULLs come in long runs, we store
raw data along with tupleID ranges indicating which tuple-
IDs are non-NULL (where a tupleID is the ordinal offset of
a value in the single-column table listing all subjects in the
dataset). For example, if tupleID 7 is the only NULL element
in a ten-tuple column, the column would list the nine non-
NULL elements in order, followed by the ranges [1,6] and
[8,10] indicating the ranges of the non-NULL tupleIDs. In
the worst case, where no two NULLs occur consecutively,
the overhead is two integer tupleIDs per NULL element. For
dense data, this overhead is small. An example of this type
of encoding is presented in Fig. 7c for the “Title” and “Lan-
guage” partitions.

For data that are neither dense nor sparse, we store the raw
non-NULL data for property p along with a bitmap with one
bit per subject. A one at offset i in the bitmap indicates that
subject i defines the particular p (i.e., it has a non-NULL
value in the vertical partition for p). For example if every
alternative element is NULL in a vertical partition that maps

123

www.manaraa.com

402 D. J. Abadi et al.

to a ten-value subject table, each non-NULL element would
be stored in order, followed by the bitmap 1010101010. The
overhead is one-bit per subject in the dataset (regardless of
the column density). An example of this type of encoding is
presented in Fig. 7c for the “Copyright” partition.

For data that are sparse, we store the raw non-NULL data
along with a list of tupleIDs of the non-NULL elements. So
if tupleID 7 is the only non-NULL element in a ten-tuple col-
umn, the column would consist of a single value (the value
of tuple 7), along with a single tupleID (7). The overhead is
one integer tupleID per non-NULL element; but for sparse
datasets this overhead is small. An example of this type of
encoding is presented in Fig. 7c for the “Author” and “Artist”
partitions. Note that when subjects are encoded using integer
keys, this technique is identical to the two-column vertical
partitioned representation.

Our previous work [2] shows experimentally that for data
of any sparsity, as long as the correct compression technique
described above is used, the overhead of the NULL elements
is small.

7.3 Query engine

Querying a collection of tables requires query plans to merge
results from individual tables together. A typical plan for
accessing a column store is shown in Fig. 8. Here, each col-
umn is scanned independently to produce a list of tuple posi-
tions that satisfy all three predicates; those positions are then
fed into a “tupleize” operator that combines the three col-
umns into a relational tuple for output to the user.

Plans in SW-Store work similarly, where columns in a
column-store map to the two-column vertical partitions in
SW-Store, a position in a column-store maps to the subject
column in the two-column vertical partitions, and “tupleize”
in a column-store becomes “merge-join” over the two-
column vertical partitions. Since two-column tables in
SW-Store are stored as a single hybrid column, it was straight-

Fig. 8 A column-oriented SW-Store query plan

forward to extend the C-Store column-oriented operators to
take data from these hybrid columns.

In general, the tupleize (merge-join) operator can be per-
formed at any point in the query plan. For example, the plan
in Fig. 8 could be rewritten so that each column (partition)
is merged at the beginning of the plan, before the predicates
are applied. SW-Store uses the heuristics presented in our
previous work on column-oriented tuple materialization [6]
to make this decision. In most cases, it is best to perform the
merge-join as late as possible, under the well-known “push
selections past joins” database optimization rule. For plans
that contain an aggregation operator, merge-join can also be
deferred until after the aggregate, since typically only a sub-
set of the properties are involved in the aggregation. How-
ever, for plans that involve subject–object joins, a decision
must be made as to whether to place the merge-join opera-
tor before the subject–object join operators. This decision is
generally based on the expected cardinality of the join [5,6].
In most cases, SW-Store performs the merge-joins before the
subject–object joins.

There is, however, an additional complication for column-
oriented query plans, since operators in these query plans no
longer form trees as in most database systems. In fact, it
is very common for an operator to have multiple parents.
For example, as shown in Fig. 9, if a predicate is applied
to a vertical partition, the result of the predicate can be rep-
resented as a list of subjects whose object values for the
property (that this vertical partition corresponds to) pass the
predicate. This list of subjects might need to be sent to multi-
ple other vertical partitions (corresponding to subject–object
values for other properties) to extract the object values at
this list of subjects. These object extraction operators thus
serve as multiple parents for the selection operator, turn-
ing the query plan into a graph of operators rather than a
tree.

This lack of tree structure is problematic for a pull-based
iterator model. If one parent consumes its input data at a
faster rate than the other, data might be lost before the slower
parent has an opportunity to process it. The problem is solved
by ensuring that the graph is still rooted with a single node
that has no parents. As long as this node requests data at the
same rate from all of its children (and this property holds
recursively for every other descendant node in the graph),
then nodes with more than one parent are guaranteed not to
have the problem of one parent requesting data at a faster rate
than the other. Thus, operator code is written very carefully—
when an operator’s own “getNextBlock” is called, it will call
“getNextBlock” on a child operator only if all data from the
previous block have been processed and are guaranteed never
to be needed again, and the last position (corresponding to
a subject value) processed from the previous block is equal
to the last position processed from all of the other children
blocks.

123

www.manaraa.com

A vertically partitioned DBMS for Semantic Web data management 403

Fig. 9 A non-tree query plan

7.3.1 Overflow tables

To support inserts of data (as described in Sect. 7.5) with-
out requiring updates to the compressed vertical partitions,
SW-Store includes a small overflow table containing triples
(stored using the standard triples schema), similar to the over-
flow tables demonstrated in Table 1c, d. Queries must there-
fore go both to the triples table and the vertical partitions
and a merge must be performed at the top of the query plan.
Given that the overflow table is not read-optimized (it is not
sorted, indexed, or compressed), we require that the over-
flow table be kept small—if it exceeds a threshold parameter,
some percentage of its data must be removed, and added to
the corresponding vertical partitions (see Sect. 7.5). Over-
flow tables may also turn out to be useful for storing some
very rare predicates.

7.3.2 Materialized joins

As described in Sect. 4, materializing paths in the RDF as
additional vertical partitions can remove subject–object joins
and improve performance.

There is, however, a cost in having a larger number of
extra materialized vertical partitions, since they need to be
recalculated whenever new triples are added to SW-Store.
For read-only or read-mostly RDF applications, the number
of materialized columns will be larger in SW-Store than for
applications where data gets inserted more frequently. In the
case where the number of extra vertical partitions is lim-
ited, the choice of what joins to materialize is based on prior
queries.

7.4 Query translation

When a SQL or SPARQL query arrives in SW-Store, it must
be converted to a query over the vertical partitions that are
in the system. We have written an automatic query translater
[10], but at the time of this publication have not yet integrated
the translater into the SW-Store, since C-Store’s generic plan
generator remains rudimentary. This section describes how
query translation works.

Queries that arrive in SPARQL, must be converted to both
SQL over a triples table (for querying the overflow table,
Sect. 7.3.1), and SQL over a vertically partitioned store. An
important goal is to push as much of the SPARQL graph
filtering as possible into the SQL [30]. We use Jena’s ARQ
module for SPARQL query parsing and implement our own
internal representation for resulting query objects. This inter-
nal representation is then converted to SQL over the triple
store and vertically partitioned schemas.

For SQL conversion with the vertically partitioned
schema, each filter over a property (e.g., “property = ‘pub-
year’ AND object = ‘2005”’ or “property = ‘type’ AND
object = ‘foo”’) is converted to a filter over the correspond-
ing vertical partition (e.g., “pubyear.object = ‘2005”’).

We illustrate this process through an example. The fol-
lowing query over a RDF triples table finds the birthday of
the author of the book “The History of VLDBJ”:

SELECT abday.object

FROM rdf AS book, rdf AS btitle, rdf AS bookauth,

rdf AS auth, rdf AS abday

WHERE book.property = “type”

AND book.object = “book”

AND book.subject = btitle.subject

123

www.manaraa.com

404 D. J. Abadi et al.

AND btitle.property = “istitled”

AND btitle.object = “The History of VLDBJ”

AND bookauth.subject = book.subject

AND bookauth.property = “hasauthor”

AND auth.subject = bookauth.object

AND auth.property = “type”

AND auth.object = “auth”

AND abday.subject = auth.subject

AND abday.property = “hasbirthday”

Over a vertically partitioned schema, this becomes:

SELECT hasbirthday.object

FROM type as t1, istitled, hasauthor, type as t2,

hasbirthday

WHERE t1.object = “book”

AND istitled.object = “The History of VLDBJ”

AND t2.object = “auth”

AND t1.subject = istitled.subject

AND t1.subject = hasauthor.subject

AND hasauthor.object = hasbirthday.subject

AND hasbirthday.subject = t2.subject

Here, all joins are fast subject-subject joins except the has-
author-hasbirthday join, because we have not materialized
the “author → birthday” path expression.

7.5 Updates

As in any vertically partitioned store, adding data to
SW-Store is potentially expensive as each update requires
writing to many columns. As in other column-store sys-
tems [45], we address this issue by batching writes. In SW-
Store, these updates can simply be added to the overflow
table, which the query executor must already merge into
query results.

A background merge process periodically scans the over-
flow table to determine whether data need to be moved into
vertical partitions. It decides to move data from the overflow
table if the size of the overflow table exceeds a threshold, so
that the cost of scanning the overflow table relative to access-
ing the read optimized vertical partitions at query time (see
Sect. 7.3.1) remains small.

Merging data from the overflow table into the vertical par-
titions can be expensive since the vertical partitions need to
be decompressed before the merge and re-compressed and
re-indexed afterwards. We keep the cost of merging low in
two ways. First, not all triples are moved out of the overflow
table upon a merge. Triples containing properties that only
appear a small number of times in the overflow table are
not merged into the corresponding vertical partitions since
the relative cost of merging these small number of triples

outweighs the benefit of removing them from the overflow
table.

Second, we partition each vertical partition horizontally
into “chunks”, such that each chunk represents a collection
of data inserted over a particular time period. When data
intended for a particular vertical partition is initially moved
out of the overflow table, it is not immediately merged into
any of these previously existing chunks; rather a new chunk is
created containing just this new data. Each additional chunk
created by this process, however, increases query time, as
queries must be run over all chunks, and each chunk must
be compressed and encoded separately. Hence, a different
background process merges small chunks into larger ones.
This process dramatically increases the efficiency of merg-
ing data from the overflow table. Instead of decompressing
and re-compressing the entire vertical partition every time
data are added, only small subsets of the vertical partition
are merged with the new data, and the cost of decompressing
and re-compressing is amortized over larger chunk merges.

8 Conclusion

The emergence of the Semantic Web necessitates high-
performance data management tools to manage the tremen-
dous collections of RDF data being produced. Current state
of the art RDF databases—triple-stores—scale extremely
poorly since most queries require multiple self-joins on the
triples table. The previously proposed “property table”
optimization has not been adopted in most RDF databases,
perhaps due to its complexity and inability to handle multi-
valued attributes. We showed that a poorly selected property
table can result in significant performance degradation over
an optimal property table, thus making the solution difficult to
use in practice (in our experiments we saw up to 381% slow-
down). As an alternative to property tables, we proposed ver-
tically partitioning tables and demonstrated that they achieve
similar performance as property tables in a row-oriented data-
base, while being simpler to implement. Further, we showed
that on a version of the C-Store column-oriented database,
it is possible to achieve a factor of 32 performance improve-
ment over the current state of the art triple store design. Que-
ries that used to take hundreds of seconds can now be run
in less than 10 seconds, a significant step toward interac-
tive-time semantic web content storage and querying. These
results illustrate the need for a DBMS designed specifically
for RDF data management, and this is the motivation of the
SW-Store database project.

Acknowledgments We thank George Huo and the Postgres develop-
ment team for their advice on our Postgres implementation, and Michael
Stonebraker for his feedback on this paper. This work was supported
by the National Science Foundation under grants IIS-048124, CNS-
0520032, IIS-0325703, and IIS-0845643.

123

www.manaraa.com

A vertically partitioned DBMS for Semantic Web data management 405

Appendix

Below are the seven benchmark queries as implemented on
a triple-store. Note that for clarity of presentation, the pred-
icates are shown on raw strings (instead of the dictionary
encoded values) and the post-processing dictionary decod-
ing step is not shown. Further, URIs have been abbreviated
(the full URIs and the list of 28 properties in the properties
table are presented in our technical report [1]).

Query1:

SELECT A.obj, count(*)
FROM triples AS A
WHERE A.prop = "<type>"
GROUP BY A.obj

Query2:

SELECT B.prop, count(*)
FROM triples AS A, triples AS B,

properties AS P
WHERE A.subj = B.subj

AND A.prop = "<type>"
AND A.obj = "<Text>"
AND P.prop = B.prop

GROUP BY B.prop

Query3:

SELECT B.prop, B.obj, count(*)
FROM triples AS A, triples AS B,

properties AS P
WHERE A.subj = B.subj

AND A.prop = "<type>"
AND A.obj = "<Text>"
AND P.prop = B.prop

GROUP BY B.prop, B.obj
HAVING count(*) > 1

Query4:

SELECT B.prop, B.obj, count(*)
FROM triples AS A,

triples AS B,
triples AS C,
properties AS P

WHERE A.subj = B.subj
AND A.prop = "<type>"
AND A.obj = "<Text>"
AND P.prop = B.prop
AND C.subj = B.subj
AND C.prop = "<language>"
AND C.obj =
"<language/iso639-2b/fre>"

GROUP BY B.prop, B.obj
HAVING count(*) > 1

Query5:

SELECT B.subj, C.obj
FROM triples AS A, triples AS B,

triples AS C
WHERE A.subj = B.subj

AND A.prop = "<origin>"
AND A.obj = "<info:marcorg/DLC>"
AND B.prop = "<records>"
AND B.obj = C.subj
AND C.prop = "<type>"
AND C.obj != "<Text>"

Query6:

SELECT A.prop, count(*)
FROM triples AS A,

properties AS P,
(
(SELECT B.subj
FROM triples AS B
WHERE B.prop = "<type>"
AND B.obj = "<Text>")

UNION
(SELECT C.subj
FROM triples AS C,

triples AS D
WHERE C.prop = "<records>"

AND C.obj = D.subject
AND D.prop = "<type>"
AND D.obj = "<Text>")

) AS uniontable
WHERE A.subj = uniontable.subj

AND P.prop = A.prop
GROUP BY A.prop

Query7:

SELECT A.subj, B.obj, C.obj
FROM triples AS A, triples AS B,

triples AS C
WHERE A.prop = "<Point>"

AND A.obj = ’"end"’
AND A.subj = B.subject
AND B.prop = "<Encoding>"
AND A.subj = C.subject
AND C.prop = "<type>"

References

1. Abadi, D., Marcus, A., Madden, S., Hollenbach, K.: Using the
Barton libraries dataset as an RDF benchmark. Technical Report
MIT-CSAIL-TR-2007-036, MIT Press, USA

2. Abadi, D.J.: Column stores for wide and sparse data. In: CIDR
(2007)

3. Abadi, D.J.: Query execution in column-oriented database systems.
PhD Dissertation, PhD Thesis, MIT Press, USA (2008)

4. Abadi, D.J., Madden, S., Ferreira, M.: Integrating compression
and execution in column-oriented database systems. In: SIGMOD
(2006)

5. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-
stores: How different are they really? In: SIGMOD (2008)

6. Abadi, D.J., Myers, D.S., DeWitt, D.J., Madden, S.R.: Materiali-
zation strategies in a column-oriented DBMS. In: Proceedings of
ICDE (2007)

7. Agrawal, R., Somani, A., Xu, Y.: Storage and querying of E-com-
merce data. In: VLDB (2001)

8. Ailamaki, A., DeWitt, D.J., Hill, M.D., Skounakis, M.: Weaving
relations for cache performance. In: VLDB, pp. 169–180 (2001)

9. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D.,
Tolle, K.: The ICS-FORTH RDFSuite: managing voluminous RDF
description bases. In: SemWeb (2001)

10. Bajda-Pawlikowski, K.: Querying RDF data stored in DBMS:
SPARQL to SQL Conversion. Technical Report TR-1409, Yale
Computer Science Department, USA

11. Batory, D.S.: On searching transposed files. ACM Trans. Database
Syst. 4(4), 531–544 (1979)

12. Beckmann, J., Halverson, A., Krishnamurthy, R., Naughton,
J.: Extending RDBMSs to support sparse datasets using an inter-
preted attribute storage format. In: ICDE (2006)

13. Bertino, E., Kim, W.: Indexing techniques for queries on nested
objects. IEEE Trans. Knowl. Data Eng. 1(2), 196–214 (1989)

123

www.manaraa.com

406 D. J. Abadi et al.

14. Boncz, P., Manegold, S., Kersten, M.: Database architecture
optimized for the new bottleneck: memory access. In: VLDB,
pp. 54–65 (1999)

15. Boncz, P.A., Kersten, M.L.: MIL primitives for querying a frag-
mented world. VLDB J. 8(2), 101–119 (1999)

16. Boncz, P.A., Zukowski, M., Nes, N.: MonetDB/X100: hyper-
pipelining query execution. In: CIDR, pp. 225–237 (2005)

17. Bonstrom, V., Hinze, A., Schweppe, H.: Storing RDF as a graph.
In: Proceedings of LA-WEB (2003)

18. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: a generic
architecture for storing and querying RDF and RDF schema. In:
ISWC, pp. 54–68 (2002)

19. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient SQL-
based RDF querying scheme. In: VLDB, pp. 1216–1227 (2005)

20. Copeland, G.P., Khoshafian, S.N.: A decomposition storage model.
In: Proceedings of SIGMOD, pp. 268–279 (1985)

21. Corwin, J., Silberschatz, A., Miller, P.L., Marenco, L.: Dynamic
tables: An architecture for managing evolving, heterogeneous bio-
medical data in relational database management systems. J. Am.
Med. Inf. Assoc. 14(1), 86–93 (2007)

22. Falcons. Searching the semantic web. Web page. http://iws.seu.
edu.cn/services/falcons/objectsearch/index.jsp/

23. Florescu, D., Kossmann, D.: Storing and querying XML data using
an RDMBS. IEEE Data Eng. Bull. 22(3), 27–34 (1999)

24. Harris, S., Gibbins, N.: 3store: efficient bulk RDF storage. In: Pro-
ceedings of PSSS’03, pp. 1–15 (2003)

25. Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search
trees for database systems. In: Proceedings of VLDB, pp. 562–573.
Zurich (1995)

26. Howe, B., Maier, D., Rayner, N., Rucker, J.: Quarrying dataspaces:
schemaless profiling of unfamiliar information sources. In: Pro-
ceedings of the workshop on information integration methods,
architectures, and systems (IIMAS) (2008)

27. Kemper, A., Moerkotte, G.: Access support relations: an indexing
method for object bases. Inf. Syst. 17(2), 117–145 (1992)

28. Library catalog data. http://simile.mit.edu/rdf-test-data/barton/
29. Longwell: http://simile.mit.edu/longwell/
30. Lu, J., Cao, F., Ma, L., Yu, Y., Pan, Y.: An Effective SPARQL

support over relational databases. In: Proceedings of the joint
ODBIS/SWDB workshop on semantic web, ontologies, and
databases (2007)

31. Lu, J., Ma, L., Zhang, L., Brunner, J.-S., Wang, C., Pan, Y., Yu,
Y.: SOR: A practical system for ontology storage, reasoning and
search. In: Proceedings of VLDB, pp. 1402–1405 (2007)

32. Lu, J., Wang, C., Ma, L., Yu, Y., Pan, Y.: Performance and scala-
bility evaluation of practical ontology systems. In: Proceedings of
the joint ODBIS/SWDB workshop on semantic web, ontologies,
and databases (2007)

33. MacNicol, R., French, B.: Sybase IQ multiplex—designed for ana-
lytics. In: VLDB pp. 1227–1230 (2004)

34. Metaweb: Freebase parallax. Web page. http://mqlx.com/~david/
parallax/

35. Milo, T., Suciu, D.: Index structures for path expressions. In: Pro-
ceedings of ICDT, pp. 277–295 (1999)

36. Olofson, C.: Worldwide rdbms 2005 vendor shares. Technical
report 201692, IDC, USA (2006)

37. Redland RDF application framework. http://librdf.org/
38. RDF Primer. W3C Recommendation. http://www.w3.org/TR/rdf-

primer (2004)
39. RDQL—A Query Language for RDF. W3C Member Submission

9 January 2004. http://www.w3.org/Submission/RDQL/, 2004
40. Simile website. http://simile.mit.edu/
41. SPARQL Query Language for RDF. W3C Working Draft 4 October

2006. http://www.w3.org/TR/rdf-sparql-query/, 2006
42. Schmidt, M., Hornung, T., Kuchlin, N., Lausen, G., Pinkel, C.: An

experimental comparison of RDF data management approaches in
a SPARQL benchmark scenario. In: Proceedings of ISWC (2008)

43. Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt,
D.J., Naughton, J.F.: Relational databases for querying XML doc-
uments: Limitations and opportunities. In: Proceedings of VLDB,
pp. 302–314 (1999)

44. Sindice. The semantic web index. http://sindice.com/
45. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M.,

Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E.J., O’Neil,
P.E., Rasin, A., Tran, N., Zdonik, S.B.: C-Store: a column-oriented
DBMS. In: VLDB, pp. 553–564 (2005)

46. Swoogle: Semantic web search engine. http://swoogle.umbc.edu/
47. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmark-

ing database representations of RDF/S stores. In: Proceedings of
ISWC (2005)

48. UniProt: RDF dataset. http://dev.isb-sib.ch/projects/uniprot-rdf/
49. Vesset, D.: Worldwide data warehousing tools 2005 vendor shares.

Technical report 203229, IDC, USA (2006)
50. W3C SWEO Community Project: Linking open data on

the semantic web. http://esw.w3.org/topic/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData

51. World Wide Web Consortium (W3C). http://www.w3.org/
52. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple index-

ing for semantic web data management. In: Proceedings of VLDB
(2008)

53. Wilkinson, K.: Jena property table implementation. In: SSWS
(2006)

54. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF
storage and retrieval in Jena2. In: SWDB, pp. 131–150 (2003)

123

http://iws.seu.edu.cn/services/falcons/objectsearch/index.jsp/
http://iws.seu.edu.cn/services/falcons/objectsearch/index.jsp/
http://simile.mit.edu/rdf-test-data/barton/
http://simile.mit.edu/longwell/
http://mqlx.com/~david/parallax/
http://mqlx.com/~david/parallax/
http://librdf.org/
http://www.w3.org/TR/rdf-primer
http://www.w3.org/TR/rdf-primer
http://www.w3.org/Submission/RDQL/
http://simile.mit.edu/
http://www.w3.org/TR/rdf-sparql-query/
http://sindice.com/
http://swoogle.umbc.edu/
http://dev.isb-sib.ch/projects/uniprot-rdf/
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.w3.org/

	SW-Store: a vertically partitioned DBMS for Semantic Web data management
	Abstract
	1 Introduction
	2 Current state of the art
	2.1 RDF in RDBMSs
	2.2 Property tables

	3 A simpler alternative
	3.1 Vertically partitioned approach
	3.2 Extending a column-oriented DBMS

	4 Materialized path expressions
	5 Benchmark
	5.1 Barton data
	5.2 Longwell overview
	5.3 Longwell queries

	6 Evaluation
	6.1 System
	6.2 Store implementation details
	6.3 Query implementation details
	6.4 Results
	6.5 Scalability
	6.6 Materialized path expressions
	6.7 The effect of further widening

	7 SW-Store Design
	7.1 System architecture
	7.2 Storage system
	7.3 Query engine
	7.4 Query translation
	7.5 Updates

	8 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

